Dr. Marques Sophie Office 519 Algebraic number theory

Spring Semester 2014 marques@cims.nyu.edu

FINAL EXAM (1h50)

Show ALL steps and make sure I understand how you get the answer to have full credit! No material allowed!

Problem 1: Show that if $r \in \mathbb{Q}$ is an algebraic integer, then $r \in \mathbb{Z}$.

Solution: Let r = c/d, (c, d) = 1 be an algebraic integer. Then r is the root of a monic polynomial in $\mathbb{Z}[x]$, say $f(x) = x^n + b_{n-1}x^{n-1} + \ldots + b_0$. So

$$f(r) = \left(\frac{c}{d}\right)^n + b_{n-1} \left(\frac{c}{d}\right)^{n-1} + \dots + b_0 = 0$$

$$\Leftrightarrow c^n + b_{n-1} c^{n-1} d + \dots + b_0 d^n = 0$$

This implies that $d|c^n$, which is true only when $d = \pm 1$. So $r = \pm c \in \mathbb{Z}$.

Problem 2:

- 1. Let $f(x) = x^n + a_n x^{n-1} + ... + a_1 x + a_0$ and assume that $p|a_i$ for $0 \le i < n$ and $p^2 \nmid a_0$. Show that f(x) is irreducible. (Hint: By contradiction, suppose that f(x) is reducible.)
- 2. Let p be a prime number and define the cyclotomic polynomial Φ_p of order p by

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1 \in \mathbb{Z}[x]$$

Show that $\Phi_p(x)$ is irreducible over \mathbb{Z} . (Hint: Compute $\Phi_p(x+1)$.)

Solution:

1. By contradiction, if p(x) factors as a product of two rational polynomials having integer coefficients. Thus if we assume that p(x) is reducible, then

$$p(x) = (b_0 + b_1 x + \dots + b_r x^r)(c_0 + c_1 x + \dots + c_s x^s),$$

where the b's and the c's are integers and where r > 0 and s > 0. Reading off the coefficient we first get $a_0 = b_0c_0$. Since $p|a_0$, p must divide one of b_0 or c_0 . Since $p^2 \nmid a_0$, p cannot divide both b_0 and c_0 . Suppose that $p|b_0$, $p \nmid c_0$. Not all the coefficients b_0 , ..., b_r can be divisible by p; otherwise since $p \nmid a_n$. Let b_k be the first b not divisible by p, which manifestly false since $p \nmid a_n$. Let b_k be the first b not divisible by p, $k \leq r < n$. Thus, $p|b_{k-1}$ and earlier b's. But $a_k = b_kc_0 + b_{k-1}c_1 + b_{k-2}c_2 + ... + b_0c_k$, which conflicts with $p|b_kc_0$. This contradiction proves that we could not have factored p(x) and so p(x) is indeed irreducible. 2. Note first that

$$\Phi_p(x+1) = \frac{(x+1)^p - 1}{x} = \sum_{i=1}^p \binom{p}{i} x^{i-1}$$

We have that $p|\binom{p}{i}$ for all $i \in \{1, 2, ..., p-1\}$ and $p^2 \nmid \binom{p}{1} = p$. Therefore by Eisenstein's Criterion, we have that $\Phi_p(x+1)$ is irreducible over \mathbb{Q} and hence over \mathbb{Z} .

Lastly, note that if $\Phi_p(x)$ were reducible, then $\Phi_p(x+1)$ is also irreducible over \mathbb{Z} .

Problem 3:

- 1. Let \mathfrak{a} be a nonzero ideal of \mathcal{O}_K . Show that $\mathfrak{a} \cap \mathbb{Z} \neq \{0\}$.
- 2. Show that every nonzero prime ideal in \mathcal{O}_K contains exactly one integer prime.

Solution:

- 1. Let α be a nonzero algebraic integer in \mathfrak{a} satisfying the minimal polynomial $x^r + a_{r-1}x^{r-1} + \ldots + a_0 = 0$ with $a_i \in \mathbb{Z}$, for any i and a_0 not zero. Then $a_0 = -(\alpha^r + \ldots + a_1\alpha)$. The left hand side of this equation is in \mathbb{Z} , while the right-hand side is in \mathfrak{a} .
- 2. By the previous question, if \mathfrak{p} is a prime ideal of \mathcal{O}_K , then certainly it contains an integer. By the definition of a prime ideal, if $ab \in \mathfrak{p}$, either $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. So \mathfrak{p} must contain some rational prime. Now, if \mathfrak{p} contain their greatest common denominator which is 1. But this contradict the assumption of non triviality. So every prime ideal of \mathcal{O}_K contains exactly one integer prime.

Problem 4: Find an integral basis for $\mathbb{Q}(\sqrt{2\sqrt{-3}})$. **Solution:** If $K = \mathbb{Q}(\sqrt{2})$, $L = \mathbb{Q}(\sqrt{-3})$, then $d_K = 8$, $d_L = -3$ which are coprime. So that, a \mathbb{Z} -basis for the ring of integers of $\mathbb{Q}(\sqrt{2}, \sqrt{-3})$ is given by

$$\{1,\sqrt{2},\frac{1+\sqrt{-3}}{2},\sqrt{2}(\frac{1+\sqrt{-3}}{2})\}$$

Problem 5: Show that $\mathbb{Z}[\sqrt{-5}]$ is a Dedekind domain, but not a principal ideal domain.

Solution: $\mathbb{Z}[\sqrt{-5}]$ is not a unique factorization domain by taking $6 = 2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$, and so cannot be a principal domain. To see that it is a Dedekind domain, it is enough to show that it is the set of algebraic integers of the algebraic number field $K = \mathbb{Q}(\sqrt{-5})$.

Problem 6: Show that a finite integral domain is a field.

Solution: Let R be a finite integral domain. Let $x_1, x_2, ..., x_n$ be the elements of R. Suppose that $x_i x_j = x_i x_k$, for some $x_i \neq 0$. Then $x_i (x_j - x_k) = 0$. Since R is an integral domain $x_j = x_k$, so j = k. Thus, for any $x_i \neq 0$,

$$\{x_i x_1, x_i x_2, ..., x_i x_n\} = \{x_1, x_2, ..., x_n\}$$

Since $1 \in R$, there exists x_j such that $x_i x_j = 1$. Therefore, x_i is invertible. Thus all nonzero elements are invertible, so R is a field.

Problem 7: Show that if \mathfrak{a} and \mathfrak{b} are ideals of \mathcal{O}_K , then $\mathfrak{b}|\mathfrak{a}$ if and only if there is an ideal \mathfrak{c} of \mathcal{O}_K with $\mathfrak{a} = \mathfrak{b}\mathfrak{c}$.

Solution: If $\mathfrak{a} \subseteq \mathfrak{b}$, then $\mathfrak{c} = \mathfrak{a}\mathfrak{b}^{-1} \subseteq \mathfrak{b}\mathfrak{b}^{-1} = \mathcal{O}_K$. Thus, $\mathfrak{a} = \mathfrak{b}\mathfrak{c}$, with \mathfrak{c} an ideal of \mathcal{O}_K . If $\mathfrak{a} = \mathfrak{b}\mathfrak{c}$ with $\mathfrak{c} \subseteq \mathcal{O}_K$, then $\mathfrak{a} = \mathfrak{b}\mathfrak{c} \subseteq \mathfrak{b}$.

Problem 8: Find a prime ideal factorization of $7\mathcal{O}_K$ in $\mathbb{Z}[(1+\sqrt{-3})/2]$.

Solution: We now consider $f(x) \pmod{7}$. We have

$$x^{2} - x + 1 \equiv x^{2} + 6x + 1 \equiv (x + 2)(x + 4) \pmod{7}$$

so 7 splits and its factorization is

$$(7) = (7, \frac{5 + \sqrt{-3}}{2})(7, \frac{9 + \sqrt{-3}}{2})$$

Problem 9: Show that

$$\sum_{a=1}^{p-1} \left(\frac{a}{p}\right) = 0$$

for any fixed prime p.

Solution: Follows directly from the far that the number of residues equals the number of non residues.

Problem 10: Show that W_K , the group of roots of unity in a number field K is cyclic, of even order.

Solution: Let $\alpha_1, ..., \alpha_l$ be the roots of unity in K. For j = 1, ..., l, $\alpha_j^{q_j} = 1$ for some q_j which implies that $\alpha_j = e^{2\pi p_j}q_j$, for some $0 \le p_j \le q_j - 1$. Let $q_0 = \prod_{i=1}^l q_j$. Then clearly, each $\alpha_i \in (e^{\frac{2\pi i}{q_0}})$ so W_K is a subgroup of the cyclic group $(e^{\frac{2\pi i}{q_0}})$ and is, thus cyclic. Moreover, since $\{\pm 1\} \subseteq W_K$, W_K has even order.

Problem 11: Show that, for any real quadratic field $K = \mathbb{Q}(\sqrt{d})$, where d is a positive square free integer, $U_K \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$. That is, there is a fundamental unit $\epsilon \in U_K$ such that $U_K = \{\pm \epsilon^k : k \in \mathbb{Z}\}$.

Solution: Since $K \subseteq \mathbb{R}$, the only roots of unity in K are $\{\pm 1\}$ so $W_K = \{\pm 1\}$. Moreover, since there are $r_1 = 2$ real and $2r_2 = 0$ non real