
Dr. Marques Sophie Algebraic number theory Spring Semester 2014
Office 519 marques@cims.nyu.edu

FINAL EXAM (1h50)

Show ALL steps and make sure I understand how you get the answer to
have full credit! No material allowed!

Problem 1: Show that if r ∈ Q is an algebraic integer, then r ∈ Z.

Solution: Let r = c/d, (c, d) = 1 be an algebraic integer. Then r is the root of a
monic polynomial in Z[x], say f(x) = xn + bn−1x

n−1 + ...+ b0.
So

f(r) =
(
c
d

)n
+ bn−1

(
c
d

)n−1
+ ....+ b0 = 0

⇔ cn + bn−1c
n−1d+ ...+ b0d

n = 0

This implies that d|cn, which is true only when d = ±1. So r = ±c ∈ Z.

Problem 2:

1. Let f(x) = xn + anx
n−1 + ... + a1x + a0 and assume that p|ai for 0 ≤ i < n and

p2 - a0. Show that f(x) is irreducible. (Hint: By contradiction, suppose that f(x)
is reducible.)

2. Let p be a prime number and define the cyclotomic polynomial Φp of order
p by

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + ...+ x+ 1 ∈ Z[x]

Show that Φp(x) is irreducible over Z. (Hint: Compute Φp(x+ 1).)

Solution:

1. By contradiction, if p(x) factors as a product of two rational polynomials having
integer coefficients. Thus if we assume that p(x) is reducible, then

p(x) = (b0 + b1x+ ...+ brx
r)(c0 + c1x+ ..+ csx

s),

where the b’s and the c’s are integers and where r > 0 and s > 0. Reading
off the coefficient we first get a0 = b0c0. Since p|a0, p must divide one of b0
or c0. Since p2 - a0, p cannot divide both b0 and c0. Suppose that p|b0, p - c0.
Not all the coefficients b0, ... , br can be divisible by p; otherwise since p - an.
Let bk be the first b not divisible by p, which manifestly false since p - an. Let
bk be the first b not divisible by p, k ≤ r < n. Thus, p|bk−1 and earlier b’s.
But ak = bkc0 + bk−1c1 + bk−2c2 + ... + b0ck, which conflicts with p|bkc0. This
contradiction proves that we could not have factored p(x) and so p(x) is indeed
irreducible.
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2. Note first that

Φp(x+ 1) =
(x+ 1)p − 1

x
=

p∑
i=1

(
p

i

)
xi−1

We have that p|
(
p
i

)
for all i ∈ {1, 2, ..., p − 1} and p2 -

(
p
1

)
= p. Therefore by

Eisenstein’s Criterion, we have that Φp(x + 1) is irreducible over Q and hence
over Z.
Lastly, note that if Φp(x) were reducible, then Φp(x + 1) is also irreducible over
Z.

Problem 3:

1. Let a be a nonzero ideal of OK . Show that a ∩ Z 6= {0}.

2. Show that every nonzero prime ideal in OK contains exactly one integer prime.

Solution:

1. Let α be a nonzero algebraic integer in a satisfying the minimal polynomial xr +
ar−1x

r−1 + ... + a0 = 0 with ai ∈ Z, for any i and a0 not zero. Then a0 =
−(αr + ...+ a1α). The left hand side of this equation is in Z, while the right-hand
side is in a.

2. By the previous question, if p is a prime ideal of OK, then certainly it contains
an integer. By the definition of a prime ideal, if ab ∈ p, either a ∈ p or b ∈ p.
So p must contain some rational prime. Now, if p contain their greatest common
denominator which is 1. But this contradict the assumption of non triviality. So
every prime ideal of OK contains exactly one integer prime.

Problem 4: Find an integral basis for Q(
√

2
√
−3).

Solution: If K = Q(
√

2), L = Q(
√
−3), then dK = 8, dL = −3 which are coprime.

So that, a Z-basis for the ring of integers of Q(
√

2,
√
−3) is given by

{1,
√

2,
1 +
√
−3

2
,
√

2(
1 +
√
−3

2
)}

Problem 5: Show that Z[
√
−5] is a Dedekind domain, but not a principal ideal

domain.

Solution: Z[
√
−5] is not a unique factorization domain by taking 6 = 2 × 3 =

(1 +
√
−5)(1−

√
−5), and so cannot be a principal domain.

To see that it is a Dedekind domain, it is enough to show that it is the set of algebraic
integers of the algebraic number field K = Q(

√
−5).

Problem 6: Show that a finite integral domain is a field.

Solution: Let R be a finite integral domain. Let x1, x2, ..., xn be the elements of
R. Suppose that xixj = xixk, for some xi 6= 0. Then xi(xj − xk) = 0. Since R is an
integral domain xj = xk, so j = k. Thus, for any xi 6= 0,

{xix1, xix2, ..., xixn} = {x1, x2, ..., xn}
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Since 1 ∈ R, there exists xj such that xixj = 1. Therefore, xi is invertible. Thus all
nonzero elements are invertible, so R is a field.

Problem 7: Show that if a and b are ideals of OK , then b|a if and only if there
is an ideal c of OK with a = bc.

Solution: If a ⊆ b, then c = ab−1 ⊆ bb−1 = OK. Thus, a = bc, with c an ideal
of OK.
If a = bc with c ⊆ OK, then a = bc ⊆ b.

Problem 8: Find a prime ideal factorization of 7OK in Z[(1 +
√
−3)/2].

Solution: We now consider f(x)(mod 7). We have

x2 − x+ 1 ≡ x2 + 6x+ 1 ≡ (x+ 2)(x+ 4) (mod 7)

so 7 splits and its factorization is

(7) = (7,
5 +
√
−3

2
)(7,

9 +
√
−3

2
)

Problem 9: Show that
p−1∑
a=1

(a
p

)
= 0

for any fixed prime p.

Solution: Follows directly from the far that the number of residues equals the number
of non residues.

Problem 10: Show that WK , the group of roots of unity in a number field K is
cyclic, of even order.

Solution: Let α1, ..., αl be the roots of unity in K. For j = 1, ..., l, α
qj
j = 1 for

some qj which implies that αj = e2πpjqj, for some 0 ≤ pj ≤ qj − 1. Let q0 =
∏l

i=1 qj.

Then clearly, each αi ∈ (e
2πi
q0 ) so WK is a subgroup of the cyclic group (e

2πi
q0 ) and is,

thus cyclic. Moreover, since {±1} ⊆ WK, WK has even order.

Problem 11: Show that, for any real quadratic field K = Q(
√
d), where d is a

positive square free integer, UK ' Z/2Z × Z. That is, there is a fundamental unit
ε ∈ UK such that UK = {±εk : k ∈ Z}.

Solution: Since K ⊆ R, the only roots of unity in K are {±1} so WK = {±1}.
Moreover, since there are r1 = 2 real and 2r2 = 0 non real
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